252 research outputs found

    First measurement of gravitational lensing by cosmic voids in SDSS

    Full text link
    We report the first measurement of the diminutive lensing signal arising from matter underdensities associated with cosmic voids. While undetectable individually, by stacking the weak gravitational shear estimates around 901 voids detected in SDSS DR7 by Sutter et al. (2012a), we find substantial evidence for a depression of the lensing signal compared to the cosmic mean. This depression is most pronounced at the void radius, in agreement with analytical models of void matter profiles. Even with the largest void sample and imaging survey available today, we cannot put useful constraints on the radial dark-matter void profile. We invite independent investigations of our findings by releasing data and analysis code to the public at https://github.com/pmelchior/void-lensingComment: 6 pages, 5 figures, as accepted by MNRA

    A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6

    Full text link
    We present and describe a catalog of galaxy photometric redshifts (photo-z's) for the Sloan Digital Sky Survey (SDSS) Data Release 6 (DR6). We use the Artificial Neural Network (ANN) technique to calculate photo-z's and the Nearest Neighbor Error (NNE) method to estimate photo-z errors for ~ 77 million objects classified as galaxies in DR6 with r < 22. The photo-z and photo-z error estimators are trained and validated on a sample of ~ 640,000 galaxies that have SDSS photometry and spectroscopic redshifts measured by SDSS, 2SLAQ, CFRS, CNOC2, TKRS, DEEP, and DEEP2. For the two best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than sigma_{68} =0.021 or $0.024. After presenting our results and quality tests, we provide a short guide for users accessing the public data.Comment: 16 pages, 12 figure

    Cross-correlation Weak Lensing of SDSS galaxy Clusters II: Cluster Density Profiles and the Mass--Richness Relation

    Get PDF
    We interpret and model the statistical weak lensing measurements around 130,000 groups and clusters of galaxies in the Sloan Digital Sky Survey presented by Sheldon et al. 2007 (Paper I). We present non-parametric inversions of the 2D shear profiles to the mean 3D cluster density and mass profiles in bins of both optical richness and cluster i-band luminosity. We correct the inferred 3D profiles for systematic effects, including non-linear shear and the fact that cluster halos are not all precisely centered on their brightest galaxies. We also model the measured cluster shear profile as a sum of contributions from the brightest central galaxy, the cluster dark matter halo, and neighboring halos. We infer the relations between mean cluster virial mass and optical richness and luminosity over two orders of magnitude in cluster mass; the virial mass at fixed richness or luminosity is determined with a precision of 13% including both statistical and systematic errors. We also constrain the halo concentration parameter and halo bias as a function of cluster mass; both are in good agreement with predictions of LCDM models. The methods employed here will be applicable to deeper, wide-area optical surveys that aim to constrain the nature of the dark energy, such as the Dark Energy Survey, the Large Synoptic Survey Telescope and space-based surveys

    Photometric Redshift Probability Distributions for Galaxies in the SDSS DR8

    Full text link
    We present redshift probability distributions for galaxies in the SDSS DR8 imaging data. We used the nearest-neighbor weighting algorithm presented in Lima et al. 2008 and Cunha et al. 2009 to derive the ensemble redshift distribution N(z), and individual redshift probability distributions P(z) for galaxies with r < 21.8. As part of this technique, we calculated weights for a set of training galaxies with known redshifts such that their density distribution in five dimensional color-magnitude space was proportional to that of the photometry-only sample, producing a nearly fair sample in that space. We then estimated the ensemble N(z) of the photometric sample by constructing a weighted histogram of the training set redshifts. We derived P(z) s for individual objects using the same technique, but limiting to training set objects from the local color-magnitude space around each photometric object. Using the P(z) for each galaxy, rather than an ensemble N(z), can reduce the statistical error in measurements that depend on the redshifts of individual galaxies. The spectroscopic training sample is substantially larger than that used for the DR7 release, and the newly added PRIMUS catalog is now the most important training set used in this analysis by a wide margin. We expect the primary source of error in the N(z) reconstruction is sample variance: the training sets are drawn from relatively small volumes of space. Using simulations we estimated the uncertainty in N(z) at a given redshift is 10-15%. The uncertainty on calculations incorporating N(z) or P(z) depends on how they are used; we discuss the case of weak lensing measurements. The P(z) catalog is publicly available from the SDSS website.Comment: 29 pages, 9 figures, single colum

    Studying Inter-Cluster Galaxy Filaments Through Stacking GMBCG Galaxy Cluster Pairs

    Full text link
    We present a method to study the photometric properties of galaxies in filaments by stacking the galaxy populations between pairs of galaxy clusters. Using Sloan Digital Sky Survey data, this method can detect the inter-cluster filament galaxy overdensity with a significance of 5σ\sim 5 \sigma out to z=0.40z=0.40. Using this approach, we study the grg-r color and luminosity distribution of filament galaxies as a function of redshift. Consistent with expectation, filament galaxies are bimodal in their color distribution and contain a larger blue galaxy population than clusters. Filament galaxies are also generally fainter than cluster galaxies. More interestingly, the observed filament population seems to show redshift evolution at 0.12<z<0.400.12<z<0.40: the blue galaxy fraction has a trend to increase at higher redshift: a filament "Butcher Oemler Effect". We test the dependence of the observed filament density on the richness of the cluster pair: richer clusters are connected by higher density filaments. We also test the spatial dependence of filament galaxy overdensity: this quantity decreases when moving away from the inter-cluster axis between a cluster pair. This method provides an economical way to probe the photometric properties of filament galaxies and should prove useful for upcoming projects like the Dark Energy Survey.Comment: Submitted to Ap

    Dynamical Confirmation of SDSS Weak Lensing Scaling Laws

    Get PDF
    Galaxy masses can be estimated by a variety of methods; each applicable in different circumstances, and each suffering from different systematic uncertainties. Confirmation of results obtained by one technique with analysis by another is particularly important. Recent SDSS weak lensing measurements of the projected-mass correlation function reveal a linear relation between galaxy luminosities and the depth of their dark matter halos (measured on 260 \hinv kpc scales). In this work we use an entirely independent dynamical method to confirm these results. We begin by assembling a sample of 618 relatively isolated host galaxies, surrounded by a total of 1225 substantially fainter satellites. We observe the mean dynamical effect of these hosts on the motions of their satellites by assembling velocity difference histograms. Dividing the sample by host properties, we find significant variations in satellite velocity dispersion with host luminosity. We quantify these variations using a simple dynamical model, measuring \mtsd a dynamical mass within 260 \hinv kpc. The appropriateness of this mass reconstruction is checked by conducting a similar analysis within an N-body simulation. Comparison between the dynamical and lensing mass-to-light scalings shows reasonable agreement, providing some quantitative confirmation for the lensing results.Comment: 7 pages, 3 figures, accepted for publication in ApJ Letter

    Cross-correlation Weak Lensing of SDSS Galaxy Clusters III: Mass-to-light Ratios

    Get PDF
    We present measurements of the excess mass-to-light ratio measured aroundMaxBCG galaxy clusters observed in the SDSS. This red sequence cluster sample includes objects from small groups with masses ranging from ~5x10^{12} to ~10^{15} M_{sun}/h. Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean \Delta \rho(r) = \rho(r) - \bar{\rho} for clusters in bins of richness and optical luminosity. We also measure the excess luminosity density \Delta l(r) = l(r) - \bar{l} measured in the z=0.25 i-band. For both mass and light, we de-project the profiles to produce 3D mass and light profiles over scales from 25 kpc/ to 22 Mpc/h. From these profiles we calculate the cumulative excess mass M(r) and excess light L(r) as a function of separation from the BCG. On small scales, where \rho(r) >> \bar{\rho}, the integrated mass-to-light profile may be interpreted as the cluster mass-to-light ratio. We find the M/L_{200}, the mass-to-light ratio within r_{200}, scales with cluster mass as a power law with index 0.33+/-0.02. On large scales, where \rho(r) ~ \bar{\rho}, the M/L approaches an asymptotic value independent of cluster richness. For small groups, the mean M/L_{200} is much smaller than the asymptotic value, while for large clusters it is consistent with the asymptotic value. This asymptotic value should be proportional to the mean mass-to-light ratio of the universe . We find /b^2_{ml} = 362+/-54 h (statistical). There is additional uncertainty in the overall calibration at the ~10% level. The parameter b_{ml} is primarily a function of the bias of the L <~ L_* galaxies used as light tracers, and should be of order unity. Multiplying by the luminosity density in the same bandpass we find \Omega_m/b^2_{ml} = 0.02+/-0.03, independent of the Hubble parameter.Comment: Third paper in a series; v2.0 incorporates ApJ referee's suggestion
    corecore